立体几何

#公式# 0 0
立体几何(Solid geometry)是3维欧氏空间的几何的传统名称,在数学中,一般作为平面几何的后续课程。立体几何主要研究三维空间中物体的形状、大小和位置关系。它涉及到点、线、面以及空间中的各种立体图形的性质和关系。学好立体几何最关键的就是建立起立体模型,把立体转换为平面,运用平面知识来解决问题。
详细介绍 PROFILE +

数学上,立体几何(Solid geometry)是3维欧氏空间的几何的传统名称—-因为实际上这大致上就是我们生活的空间。一般作为平面几何的后续课程。立体测绘(Stereometry)处理不同形体的体积的测量问题:圆柱,圆锥,锥台,球,棱柱,楔, 瓶盖等等。毕达哥拉斯学派就处理过球和正多面体,但是棱锥,棱柱,圆锥和圆柱在柏拉图学派着手处理之前人们所知甚少。尤得塞斯(Eudoxus)建立了它们的测量法,证明锥是等底等高的柱体积的三分之一,可能也是第一个证明球体积和其半径的立方成正比的。

基本课题

课题内容

包括:

-面和线的重合

-二面角和立体角

-方块,长方体,平行六面体

-四面体和其他棱锥

-棱柱

-八面体,十二面体,二十面体

-圆锥,圆柱

-球

-其他二次曲面:回转椭球,椭球,抛物面,双曲面

公理:

立体几何中有4个公理

公理1 如果一条直线上的两点在一个平面内,那么这条直线在此平面内。

公理2 过不在一条直线上的三点,有且只有一个平面。

公理3 如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。

公理4 平行于同一条直线的两条直线平行。

三垂线定理

在平面内的一条直线,如果和穿过这个平面的一条斜线在这个平面内的射影垂直,那么它也和这条斜线垂直。

三垂线定理的逆定理:在平面内的一条直线,如果和穿过这个平面的一条斜线垂直,那么它也和这条斜线在平面的射影垂直。

1、三垂线定理描述的是PO(斜线),AO(射影),a(直线)之间的垂直关系。

2、a与PO可以相交,也可以异面。

3、三垂线定理的实质是平面的一条斜线和平面内的一条直线垂直的判定定理。

关于三垂线定理的应用,关键是找出平面(基准面)的垂线。至于射影则是由垂足,斜足来确定的,因而是第二位的。从三垂线定理的证明得到证明a⊥b的一个程序:一垂,二射,三证。即

第一,找平面(基准面)及平面垂线;

第二,找射影线,这时a,b便成平面上的一条直线与一条斜线;

第三,证明射影线与直线a垂直,从而得出a与b垂直。

注:

1.定理中四条线均针对同一平面而言;

2.应用定理关键是找"基准面"这个参照系。

用向量证明三垂线定理。

1.已知:PO,PA分别是平面α的垂线,斜线,OA是PA在α内的射影,b∈α,且b⊥OA,求证:b⊥PA。

证明:∵PO⊥α,∴PO⊥b,又∵OA⊥b向量PA=(向量PO 向量OA)

∴向量PA乘以b=(向量PO 向量OA)乘以b=(向量PO乘以b)加(向量OA乘以b)=O,

∴PA⊥b。

2.已知:PO,PA分别是平面α的垂线,斜线,OA是PA在α内的射影,b∈α,且b⊥PA,求证:b⊥OA。

证明:∵PO⊥α,∴PO⊥b,又∵PA⊥b,向量OA=(向量PA-向量PO)

∴向量OA乘以b=(向量PA-向量PO)乘以b=(向量PA乘以b)减 (向量PO乘以b )=0,

∴OA⊥b。

3.已知三个平面OAB,OBC,OAC相交于一点O,∠AOB=∠BOC=∠COA=60°,求交线OA于平面OBC所成的角。

向量OA=(向量OB 向量AB),O是内心,又因为AB=BC=CA,所以OA于平面OBC所成的角是30°。

二面角

定义

平面内的一条直线把平面分为两部分,其中的每一部分都叫做半平面,从一条直线出发的两个半平面所组成的图形,叫做二面角。(这条直线叫做二面角的棱,每个半平面叫做二面角的面)

平面角

以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。

平面角是直角的二面角叫做直二面角。

两个平面垂直的定义:两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直。

大小范围

范围为:0≤θ≤π;

相交时0<θ<π,共面时θ=π或0。

求法

有六种:

1.定义法

2.垂面法

3.射影定理

4.三垂线定理

5.向量法

6.转化法

二面角一般都是在两个平面的相交线上,取恰当的点,经常是端点和中点。过这个点分别在两平面做相交线的垂线,然后把两条垂线放到一个三角形中考虑。有时也经常做两条垂线的平行线,使他们在一个更理想的三角形中。

由公式S射影=S斜面cosθ,作出二面角的平面角直接求出。运用这一方法的关键是从图中找出斜面多边形和它在有关平面上的射影,而且它们的面积容易求得。

也可以用解析几何的办法,把两平面的法向量n1,n2的坐标求出来。然后根据n1·n2=|n1||n2|cosα,θ=α为两平面的夹角。这里需要注意的是如果两个法向量都是垂直平面,指向两平面内,所求两平面的夹角θ=π-α。

二面角的通常求法:

(1)由定义作出二面角的平面角;

(2)作二面角棱的垂面,则垂面与二面角两个面的交线所成的角就是二面角的平面角;

(3)利用三垂线定理(逆定理)作出二面角的平面角;

(4)空间坐标求二面角的大小。

其中,(1)、(2)点主要是根据定义来找二面角的平面角,再利用三角形的正、余弦定理解三角形。

(3)中利用三垂线定理求二面角,如图,前提条件是平面α与平面β的交线为l。直线AB垂直于平面β于B点,交α于A点,步骤是:

第一步,过B作BP垂直于l于P。

第二步,连接AP。则∠APB为二面角A-l-B的平面角。

第三步,求出∠APB的大小,即为二面角A-l-B的大小。

如果是利用三垂线逆定理,前提条件相同,步骤是:

第一步,过A作AP垂直于l与P。

第二步,连接BP。则∠APB为二面角A-l-B的平面角。

第三步,求出∠APB的大小,即为二面角A-l-B的大小。

基本步骤

(1)作出二面角的平面角:

A:利用等腰(含等边)三角形底边的中点作平面角;

B:利用面的垂线(三垂线定理或其逆定理)作平面角;

C:利用与棱垂直的直线,通过作棱的垂面作平面角;D:利用无棱二面角的两条平行线作平面角。

(2)证明该角为平面角;

(3)归纳到三角形求角。

另外,也可以利用空间向量求出。

相关关系

二面角的大小就用它的“平面角”来度量。二面角的平面角大小数值就等于二面角的大小。

空间向量

向量描述

直线的方向向量:向量所在直线和直线平行或重合的向量叫做直线的方向向量。点的位置向量:选一点作为基点,空间中任意一点可用向量OP表示。

平面的法向量:如果α所在的直线垂直于平面β,那么α是β的法向量。

空间的角

直线所成的角:设直线m、n的方向向量为a、b,m,n所成的角为a。

cosa=cos=a*b/|a||b|

直线和平面所成的角:设直线m的方向向量为a,平面e的法向量为c。

设b为m和e所成的角,则b=π/2±,sinb=|cos|=|a*c|/|a||c|

距离求解

异面直线的距离:l1、l2为异面直线,l1,l2公垂直线的方向向量为n,C、D为l1、l2上任意一点,l1到l2的距离为|AB|=|CD*n|/|n|

点到平面的距离:设PA为平面的一条斜线,O是P点在a内的射影,PA和a所成的角为b,n为a的法向量。

易得:|PO|=|PA|sinb=|PA|*|cos|=|PA|*(|PA*n|/|PA||n|)=|PA*n|/|PA|

直线到平面的距离为在直线上一点到平面的距离;

平面到平面的距离为在平面上一点到平面的距离;

点到直线的距离:A∈l,O是P点在l上的射影,PA和l所成的角为b,s为l的方向向量。易得:

|PO|=|PA|*|sinb|=|PA|*|sin|=|(PA|^2|s|^2|-|PA*s|^2)^1/2/|s|

线面方程

定义

平面:在空间中,到两点距离相等的点的轨迹叫做平面。

直线:同时属于两个平面的点的轨迹。

或:在平面里,到两个点距离相等的点。

方程

平面:根据定义,设动点为M(x,y,z),两点分别为(a,b,c)和(d,e,f)

则[(x-a)^2 (y-b)^2 (z-c)^2]^1/2

=[(x-d)^2 (y-e)^2 (z-f)^2]^1/2x^2-2ax y^2-2by z^2-2cz(a^2 b^2 c^2)

=x^2-2dx y^2-2ey z^2-2fz (d^2 e^2 f^2)(2d-2a)x (2e-2b)y (2f-2c)z (a^2-d^2 b^2-e^2 c^2-f^2)

=0

形式为ax by cz d=0。

直线:根据定义,可列方程组:

ax by cz d=0

ex fy gz h=0

得其形式是:

x=jz k

y=lz m

线面求法

(1)三点式

则三点同时满足

ax0 by0 cz0 d=0

ax1 by1 cz1 d=0

ax2 by2 cz2 d=0

可得出a-b-c-d的关系,再把d取特殊值,解方程。

(2)点线式

可在线上找两个点,转化成三点式。

(3)双线式(不异面)

可在两个线上共找三个点,转化成三点式。得:ax by cz d=0

(4)线斜式

斜率:该平面和xOy平面的二面角的正切。

求法:设该平面为ax by cz d=0,xOy是z=0

即k=c/(a^2 b^2 c^2)且它通过y=kx b,z=lz a

根据判定,可得a-b-c-d的关系。再把d赋特殊值。

(5)两点式

用待定系数法求出k,l,m,n的关系,再取特殊值。

向量求法

直线:截取直线l上两点A(l,n,0)和B(k l,m n,1)方向向量为:AB=(k,m,1)

平面:取平面内三点:A(0,0,-d/c)B(1,1,-(d b a)/c)C(0,2,-(d 2b)/c)

AC=(0,2,-2b/c)AB=(1,1,-(a b)/c)

设向量n:(x,y,c)为平面的法向量,则

2y-2b=0 x y-(a b)=0

y=b x=a

则n=(a,b,c)为平面的一个法向量。

直线平面的关系

直线和直线:

设设直线方程为x=k1z l1,y=m1z n1和x=k2z l2,y=m2z n2

相交:两条直线所组成的方程组有实数解

平行:k1/k2=m1/m2且l1/l2≠n1/n2

异面:不相交也不平行

垂直:k1k2 m1m2=-1

直线和平面

设直线方程为x=kz b,y=lz a,平面方程为cx dy ez f=0,p=k l e,q=a b f

属于:p=0,q=0

平行:p=0,q≠0

相交:p≠0

垂直:k/c=b/d=e

平面和平面

设平面方程为ax by cz d=0和ex fy gz h=0,p=a/e,q=b/f,r=c/g,s=d/h

相交:不平行

平行:p=q=r≠s

垂直:ae bf cg=0

知识点总结

1.直线在平面内的判定

(1)利用公理1:一直线上不重合的两点在平面内,则这条直线在平面内。

(2)若两个平面互相垂直,则经过第一个平面内的一点垂直于第二个平面的直线在第一个平面内,即若α⊥β,A∈α,AB⊥β,则AB∈α。

(3)过一点和一条已知直线垂直的所有直线,都在过此点而垂直于已知直线的平面内,即若A∈a,a⊥b,A∈α,b⊥α,则a∈α。

(4)过平面外一点和该平面平行的直线,都在过此点而与该平面平行的平面内,即若P∈α,P∈β,β平行α,P∈a,a∥α,则a∈β。

(5)如果一条直线与一个平面平行,那么过这个平面内一点与这条直线平行的直线必在这个平面内,即若a//α,A∈α,A∈b,b∥a,则b∈α。

2.存在性和唯一性定理

(1)过直线外一点与这条直线平行的直线有且只有一条;

(2)过一点与已知平面垂直的直线有且只有一条;

(3)过平面外一点与这个平面平行的平面有且只有一个;

(4)与两条异面直线都垂直相交的直线有且只有一条;

(5)过一点与已知直线垂直的平面有且只有一个;

(6)过平面的一条斜线且与该平面垂直的平面有且只有一个;

(7)过两条异面直线中的一条而与另一条平行的平面有且只有一个;

(8)过两条互相垂直的异面直线中的一条而与另一条垂直的平面有且只有一个。

3.射影及有关性质

(1)点在平面上的射影:自一点向平面引垂线,垂足叫做这点在这个平面上的射影,点的射影还是点。

(2)直线在平面上的射影:自直线上的两个点向平面引垂线,过两垂足的直线叫做直线在这平面上的射影,和射影面垂直的直线的射影是一个点;不与射影面垂直的直线的射影是一条直线。

(3)图形在平面上的射影:一个平面图形上所有的点在一个平面上的射影的集合叫做这个平面图形在该平面上的射影。当图形所在平面与射影面垂直时,射影是一条线段;当图形所在平面不与射影面垂直时,射影仍是一个图形。

(4)射影的有关性质:从平面外一点向这个平面所引的垂线段和斜线段中:(i)射影相等的两条斜线段相等,射影较长的斜线段也较长;(ii)相等的斜线段的射影相等,较长的斜线段的射影也较长;(iii)垂线段比任何一条斜线段都短。

4.空间中的各种角等角定理及其推论定理

若一个角的两边和另一个角的两边分别平行,并且方向相同,则这两个角相等.推论若两条相交直线和另两条相交直线分别平行,则这两组直线所成的锐角(或直角)相等。异面直线所成的角

(1)定义:a、b是两条异面直线,经过空间任意一点O,分别引直线a′a,b′∥b,则a′和b′所成的锐角(或直角)叫做异面直线a和b所成的角。

(2)取值范围:0°<θ≤90°.

(3)求解方法:根据定义,通过平移,找到异面直线所成的角θ;解含有θ的三角形,求出角θ的大小。

5.直线和平面所成的角

(1)定义:和平面所成的角有三种:(i)垂线 面所成的角的一条斜线和它在平面上的射影所成的锐角,叫做这条直线和这个平面所成的角。(ii)垂线与平面所成的角 直线垂直于平面,则它们所成的角是直角。(iii)一条直线和平面平行,或在平面内,则它们所成的角是0°的角。

(2)取值范围:0°≤θ≤90°

(3)求解方法:作出斜线在平面上的射影,找到斜线与平面所成的角θ.解含θ的三角形,求出其大小.最小角定理斜线和平面所成的角,是这条斜线和平面内经过斜足的直线所成的一切角中最小的角,亦可说,斜线和平面所成的角不大于斜线与平面内任何直线所成的角。

6.二面角及二面角的平面角

(1)半平面:直线把平面分成两个部分,每一部分都叫做半平面。

(2)二面角:条直线出发的两个半平面所组成的图形叫做二面角。这条直线叫做二面角的棱,这两个平面叫做二面角的面,即二面角由半平面一棱一半平面组成.若两个平面相交,则以两个平面的交线为棱形成四个二面角。二面角的大小用它的平面角来度量,通常认为二面角的平面角θ的取值范围是0°<θ≤180°。

(3)二面角的平面角:以二面角棱上任意一点为端点,分别在两个面内作垂直于棱的射线,这两条射线所组成的角叫做二面角的平面角。二面角的平面角具有下列性质:(i)二面角的棱垂直于它的平面角所在的平面,即AB平面PCD。(ii)从二面角的平面角的一边上任意一点(异于角的顶点)作另一面的垂线,垂足必在平面角的另一边(或其反向延长线)上。(iii)二面角的平面角所在的平面与二面角的两个面都垂直,即平面PCDα,平面PCDβ。③找(或作)二面角的平面角的主要方法:(i)定义法。(ii)垂面法。(iii)三垂线法。(iiii)根据特殊图形的性质。

(4)求二面角大小的常见方法:先找(或作)出二面角的平面角θ,再通过解三角形求得θ的值。利用面积射影定理S′=S·cosα其中S为二面角一个面内平面图形的面积,S′是这个平面图形在另一个面上的射影图形的面积,α为二面角的大小。利用异面直线上两点间的距离公式求二面角的大小。

7.空间的各种距离点到平面的距离

(1)定义:面外一点引一个平面的垂线,这个点和垂足间的距离叫做这个点到这个平面的距离.

(2)求点面距离常用的方法:

1)直接利用定义求找到(或作出)表示距离的线段;抓住线段(所求距离)所在三角形解之。

2)利用两平面互相垂直的性质.即如果已知点在已知平面的垂面上,则已知点到两平面交线的距离就是所求的点面距离。

3)体积法其步骤是:在平面内选取适当三点,和已知点构成三棱锥;求出此三棱锥的体积V和所取三点构成三角形的面积S;由V=S·h,求出h即为所求。这种方法的优点是不必作出垂线即可求点面距离。难点在于如何构造合适的三棱锥以便于计算。

4)转化法将点到平面的距离转化为(平行)直线与平面的距离来求。

8.直线和平面的距离

(1)定义:一条直线和一个平面平行,这条直线上任意一点到平面的距离,叫做这条直线和平面的距离.

(2)求线面距离常用的方法:直接利用定义求证(或连或作)某线段为距离,然后通过解三角形计算之。将线面距离转化为点面距离,然后运用解三角形或体积法求解之。作辅助垂直平面,把求线面距离转化为求点线距离。

9.平行平面的距离

(1)定义:两个平行平面同时垂直的直线,叫做这两个平行平面的公垂线。公垂线夹在两个平行平面间的部分,叫做这两个平行平面的公垂线段。两个平行平面的公垂线段的长度叫做这两个平行平面的距离。

(2)求平行平面距离常用的方法:直接利用定义求证(或连或作)某线段为距离,然后通过解三角形计算之。把面面平行距离转化为线面平行距离,再转化为线线平行距离,最后转化为点线(面)距离,通过解三角形或体积法求解之。

10.异面直线的距离

(1)定义:与异面直线都垂直相交的直线叫做两条异面直线的公垂线。两条异面直线的公垂线在这两条异面直线间的线段的长度,叫做两条异面直线的距离。任何两条确定的异面直线都存在唯一的公垂线段。

(2)求两条异面直线的距离常用的方法:(1)定义法题目所给的条件,找出(或作出)两条异面直线的公垂线段,再根据有关定理、性质求出公垂线段的长。此法一般多用于两异面直线互相垂直的情形。(2)转化法:为以下两种形式:线面距离面面距离③等体积法④最值法⑤射影法⑥公式法。

定理口诀

点线面三位一体,柱锥台球为代表。距离都从点出发,角度皆为线线成。

垂直平行是重点,证明须弄清概念。线线线面和面面、三对之间循环现。

方程思想整体求,化归意识动割补。计算之前须证明,画好移出的图形。

立体几何辅助线,常用垂线和平面。射影概念很重要,对于解题最关键。

异面直线二面角,体积射影公式活。公理性质三垂线,解决问题一大片。

本百科词条由网站注册用户【 CN101068 】编辑上传提供,当前页面所展示的词条介绍涉及宣传内容属于注册用户个人编辑行为,网站不完全保证内容信息的准确性、真实性,也不代表本站立场。 版权声明 反馈 我要认领
词条所在榜单
相关知识文章
影响世界的十大公式 最伟大的公式排名 世界著名公式大全
公式是一门学科智慧的结晶,也代表着这门学科的发展程度。有的公式影响了社会的发展,塑造了人类的思想。本文中maiGOO小编就带大家看一份影响世界的十大公式名单,其中有薛定谔方程、1+1=2、勾股定理、质能方程,以及傅立叶变换、欧拉公式、牛顿第二定律、麦克斯韦方程组等最著名的数学公式。一起来详细了解下。
初中数学十大必背公式 初中数学公式大全 初一到初三数学公式归纳
初中数学是初中阶段一门很重要的学科,主要包括数与式、几何、函数与方程、概率统计等方面的内容,并要求学生熟练掌握一些重要的数学公式。那么你知道初中必背的数学公式有哪些吗?初中考试中常见的数学公式又有哪些呢?本文就为大家整理了一份初中数学十大必背公式,包括分式运算公式、勾股定理公式、方差和标准差公式、二次函数公式、一元二次方程公式、三角函数公式等,一起随MAIgoo小编来详细了解下吧。
高中数学十大必背公式 高中重点数学公式大全 高中数学公式汇总
高中数学是高中阶段一门很重要的学科,主要包括集合与函数、三角函数、不等式、数列等方面的内容,并要求学生熟练掌握一些重要的数学公式。那么你知道高中必背的数学公式有哪些吗?高中考试中常见的数学公式又有哪些呢?本文就为大家整理了一份高中数学十大必背公式,包括集合公式、初等函数公式、三角函数公式、三角恒等变换公式、数列公式、因式分解公式等,一起随MAIgoo小编来详细了解下吧。
初中物理十大必背公式 中考物理常用公式 初中物理公式大全
初中物理是初中阶段的一门重要学科,主要介绍了物理学的基础知识,并要求学生熟练掌握一些重要的物理公式。那么你知道初中必背物理公式有哪些吗?中考物理常用公式又有哪些呢?本文就为大家整理了一份初中物理十大必背公式,包括:速度公式、欧姆定律公式、密度公式、压强公式、重力公式、浮力公式等,一起随MAIgoo小编来详细了解下吧。
高中物理十大必背公式 高考物理常用公式 高中物理公式大全
高中物理是高中阶段的一门重要学科,主要介绍了物理学的基础知识和一些基本概念,并要求学生熟练掌握一些重要的物理公式。那么你知道高中必背物理公式有哪些吗?高考物理常用公式又有哪些呢?本文就为大家整理了一份高中物理十大必背公式,包括:匀变速直线运动公式、加速度公式、动力学定理定律公式、常见的力公式、热学公式、电场公式等,一起随MAIgoo小编来详细了解下吧。
鸡兔同笼应用题100道带答案 鸡兔同笼经典例题及简单解法
鸡兔同笼是中国古代的数学名题之一,大约在1500年前,《孙子算经》中就记载了这个有趣的问题,许多小学算术应用题都可以转化成这类问题,今天本文就为大家整理了鸡兔同笼应用题100道,一起来看看吧。
100道有趣又烧脑的数学题 经典烧脑的数学智力题带答案
在各种学科中,数学的位置无可替代,对于人的逻辑思维能力、想象能力、理解问题能力、细心程度等等是项全方位的考验,一些有趣的数学问题更是对智商高低的印证,本文就为大家带来了100道有趣又烧脑的数学题,看看你能答对几个吧。
六年级奥数思维训练题100道 六年级数学竞赛100题及答案
六年级已经完成了小学的全部学习,而奥数的学习则可以让学生开拓思维,从而更容易接受初中知识,一些小学奥数题甚至可以难倒许多初中学生甚至家长,本文就为大家带来了六年级奥数思维训练题100道,你全都会做吗?
四年级奥数思维训练题100道 四年级数学竞赛100题及答案
四年级是小学学习的关键时期,对于很多学生来说甚至是一生的分水岭,而奥数的学习不仅能开拓学生的思维,还能使原本的学习内容得到巩固,本文就为大家整理了四年级奥数思维训练题100道,希望对您有所帮助。
初一数学必练100题及答案 七年级计算题大全 初一数学几何题100道
初中的学习,尤其是初中数学,是数学学科一个新的开始,小学阶段的学习内容在这时才刚开始发挥用处,同样的,初一也是初中的打基础阶段,需要大量的练习加以巩固,本文就为大家整理了初一数学必练100题及答案,希望对您有所帮助。
初二数学必练100题 初二数学题库大全 八年级计算题100道及答案
初二是初中学习的重要阶段,尤其是初二的数学是关键的承上启下时期,很多曾经成绩不错的同学都是在初二落下,所以大量的练习至关重要,本文就为大家整理了初二数学必练100题,希望对您有所帮助。
五年级奥数思维训练题100道 五年级数学竞赛100题及答案
五年级对于小学来说是非常重要的时期,知识的难度提高了一个层次,许多内容甚至是初中知识的根基,而奥数的学习不仅能使学生的思维更加灵活,还能对巩固原本学识的知识,本文就为大家带来了五年级奥数思维训练题100道,希望对您有所帮助。
初中奥数题100道及答案 初中奥数训练题大全 初中数学竞赛100题
说到奥数题,大家一般想到的都是小学奥数,其实如果在小学阶段的学习成果足够优秀的话,初中的奥数学习更会使学生更加充满乐趣和收获,甚至走上更高的舞台,本文就为大家整理了初中奥数题100道及答案,希望对您有所帮助。
奥数行程问题100道 行程问题经典题型 行程应用题100题及答案
行程问题是小学奥数中的一大基本问题。行程问题有相遇问题、追及问题等近十种,是问题类型较多的题型之一,包含多人行程、二次相遇、多次相遇、火车过桥、流水行船、环形跑道、钟面行程、走走停停、接送问题等。本文就为大家整理了奥数行程问题100道,希望对您有所帮助。
五年级数学题100道含答案 五年级计算题大全 五年级数学必练100题
五年级是小学最重要的学习阶段之一,五年级的学生已经学习了计算题、解方程式、应用题等题型,这一时期必须通过大量的练习来巩固所学的知识,今天本文就为大家整理了五年级数学题100道含答案,希望对您有所帮助。
三年级奥数思维训练题100道 三年级数学竞赛100题及答案
小学三年级是打基础的关键时期,而这一时期学习奥数无疑可以帮助孩子拓展思维,并且更好地消化原本的学习内容,本文就为大家整理了三年级奥数思维训练题100道,希望对您有所帮助。
小数除法计算题100道 小数除法竖式题大全 小数除法带答案100题
小数除法是已知两个因数的积与其中的一个因数,求另一个因数的运算,在小学阶段,小数除法是至关重要的学习内容之一,老师讲解之后必须还要有大量的练习来巩固,今天本文就为大家整理了小数除法计算题100道,希望对您有所帮助。
100道简便计算题及答案 简便运算练习题大全 数学简便运算100题
在数的运算中,有加(+)、减(-)、乘(×)、除(÷)四种运算,我们在数学上又为了能更简便计算它们,简称称作简算,也是小学数学计算题中最常见的一种,本文就为大家整理了100道简便计算题及答案,希望对您有所帮助。
三年级数学计算题100道 小学三年级计算题大全 三年级数学必练100题
三年级是小学教育中至关重要的一年,在这个承上启下的阶段既要吸收新知识又要巩固已学的内容,所以大量的练习巩固必不可少,今天本文就为大家整理了三年级数学计算题100道,希望对您有所帮助。
100道解方程数学题 解方程练习题大全 方程应用题100道带答案
方程是表示两个数学式(如两个数、函数、量、运算)之间相等关系的一种等式,使等式成立的未知数的值称为“解”或“根”,求方程的解的过程称为“解方程”,这一部分的学习内容非常重要,本文就为大家整理了100道解方程数学题,希望对您有所帮助。
XML 地图